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Laws of decay of simultaneous many-point correlators of turbulent-velocity differences are derived
in the asymptotic region where either one space point or a group of points is far away from another
group of points. An asymptotic decomposition rule of (n +m)-point correlators in terms of (n+ 1)-,
(m + 1)-, and two-point correlators is presented. These results may be directly applied or easily
extended to the turbulence of cold electron plasma, convective turbulence, some problems of surface

roughening at crystal growth, etc.

PACS number(s): 47.10.+g, 47.27.—1i
I. INTRODUCTION

Consider the simultaneous (n + m)-point correlation
function of velocity in the case where the distance R be-
tween the “left” group of n points and the “right” group
of m points becomes much larger than the characteristic
distance r within each group, see Fig. 1.

Clearly these correlators have to decay as the dis-
tance R increases. In the present Rapid Communica-
tion this law of decay is derived in the limit R > r
for two types of (n + m)-point correlators, which are
averaged over chains of velocity differences v ) =
|[v(r;) — v(rm)|. The first type is (¥, ,,), where

nm = U(1,2)V(2,3)---V(n,n+1) - V(ntm—1,n+m)V(nt+m,1) de-
notes a cyclic chain running though n points of the “left”
and m points of the “right” group. There are only two
intergroup links in the chain. In terms of the double
correlator D(R) = (|v(r1) — v(r; + R)|?), we obtain for
m > 2,
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Equation (1) for (¥4 2) was found by L’vov and Falkovich
[1]. Correlators of the second type describe correlations
between two disconnected cyclic chains ¥, o and ¥q .,
formed within each of the separated groups:

(n,0%0,m) — (¥n,0) (¥o,m) x 8_8%(5}2_) . (2)

Equations (1) and (2) represent the asymptotic decorre-

lation laws for different types of correlation functions.

“left” group of n=3 points “right” group of m=2 points

0T (i=1,2,3) (j=4,5) .. -
‘I . N Is ’
e Ro—r—rmemrmimey
el .. ®, .
RS U el
FIG. 1. Positions of points placed in two (“left” and

“right”) compact groups which are separated by a large dis-
tance R.
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The physical meaning of these relations is rather sim-
ple. First of all the correlation of the turbulent velocity
field between two points (or close group of points) at
relative distance R is mostly carried by eddies of charac-
teristic size R. That is why the correlators (1) and (2)
contain the double correlator D(R) describing the level
of excitation of those R eddies. However, the velocity
field of R eddies is almost homogeneous on scales r < R.
It is clear that a homogeneous velocity field does not ef-
fect the behavior of small r eddies, which determine the
correlations within each group of closely spaced points.
For 7 <« R the leading-order effect on r eddies is due
to the velocity gradient of R eddies. This explains the
appearance of 9/0R in Eq. (1). As we are interested
in correlations between two groups of points r; and r;
the effect of the velocity gradient occurs twice, once for
each group. Therefore one has the factor [§/0R]? in (2).
Unlike ¥, ¢¥o ., the function ¥,,, contains the factor
|[v(r1) — v(r1 + R)|%. Therefore (¥,, ,,,) (1) contains the
additional factor D(R) with respect to (2).

Consider the above relation in k representation, ex-
pressing the correlators (¥, ), (¥n,0%o,m) (With the
help of corresponding k integrations) in terms of

FN;a,ﬂ,...,p(kl,k27 sy kN)(S(kl + k2 +-+ kN)
= (va(ky,t)vp(ke, t) - vu(kn,t)) ,  (3)

where N = n + m. The main contribution to the
correlator (¥, ,,,) comes from the region of integration
ki ~ (1/R) < ky ~ ks ~ ~ ky ~ (1/r) for
n = 1,m > 2 and from the region k; ~ k; ~ (1/R)
L ks ~ ---ky ~ (1/r) for n > 2,m > 2, while
the correlator (¥, oo n) is determined by the region
k1 — k2| ~ (1/R) < ki,k2,...,kn ~ (1/7). Actually
relations (1) and (2) are a consequence of the following
asymptotic relations derived in this Rapid Communica-
tion:

’ kN)

pFN;a,ﬂ,...,u(K'lvr'"2, ey Ry, kl+17 e

x [an(nl)] (4)

in the limit x; < kj,
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Frap,ukka, oy kn Kniayoos, k) o< [2F ()]
(5)

in the limit
|k1+k2+"‘+kl|="‘3<<kn3 L<mn. (6)

Results (1) and (2) may be easily generalized to describe
other types of correlators, as, e.g., the case where a single
closed chain crosses the gap an even number of times, etc.
To do this one has to represent a given correlator in the
k representation and then to utilize relations (4) and (6).
Note that in the limit (6) one may explicitly express
the correlator Fy (N = n + m) for isotropic turbulence
in terms of lower-order correlators Fiy, 1), F(14m), Fa:

FN;GI7a2v"',anyﬁ1)62)~--7ﬂm (kl’k27 cooskny kngr, . 7kN)

= n+1;a1,az...,a",‘y(klak27'"3kna_n)
XF14miyB:,B2,..rBrm (K Kng1, - kN) [ F2i55(5) - (T7)

This is the law of correlator decomposition.

The proof of Eqgs. (4)—(7) given below is based on the
Navier-Stokes equation and contains no approximations,
such as truncation of perturbation series, etc. The basic
idea is that in the limit R > r the correlation between
the “left” point (or “left” group of points) r; and the
“right” group of points r; is described by a very simple
sequence of diagrams if one uses the quasi-Lagrangian
diagrammatic approach [2,3], which allows us to elimi-
nate the sweeping of small eddies by the velocity field of
the larger ones. The principal sequence of such diagrams
describes one-eddy exchange and contains the “left” and
“right” parts of the diagrams connected to each other
only via the line of the double velocity correlator—see
Figs. 2 and 3. These diagrams exceed all others by a
factor K ~ (R/r)?, with p either ~ 8/3 or ~ 5/3, as will
be detailed below. It is important to stress that such an
order-by-order analysis of the diagrammatic expansion
becomes possible only in quasi-Lagrangian variables pre-
serving the Galilean invariance of the problem in each
diagram. In the framework of Wyld’s initial diagram-
matic technique [4] any truncation of the series breaks
this symmetry and leads to qualitatively wrong results.

FaﬁNa B’ Vap./'v "O:,

(a)

FIG. 2. Diagrammatic representation for triple correla-
tor of QL-velocity. A, graphical notation; B, diagrams for
first-order contribution; C, classification of diagrams with re-
spect to type of k,w leg.
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FIG. 3. Classification of diagrams for five-order correlator
with respect to the number of double correlators in the prin-
cipal intersection.

The exact asymptotic predictions (1)—(7) are interest-
ing in themselves. They may be checked in physical or
computer experiments. Expression (7) gives also an im-
portant theoretical relation between scaling exponents of
n-order correlators (10). We proceed now to discuss the
different types of turbulence scaling and constraints for
scaling exponents following from some exact relations de-
rived in this paper as well as in the paper of L’vov and
Lebedev [5].

Note that the method of deriving the relations (1)—(7)
is based on the topological properties of diagrams and
on the fact of locality of interaction and does not use
more detailed properties of the system under consider-
ation. Therefore our results may be directly applied or
easily extended to various systems of hydrodynamic type
with local interaction like the turbulence of cold electron
plasma, turbulent diffusion of passive scalar, convective
turbulence, some problem of surface roughening at crys-
tal growths and flame propagation, etc.

II. TYPES OF TURBULENT SCALING
AND CONSTRAINTS FOR SCALING
EXPONENTS

One may distinguish three levels of description of ve-
locity correlation functions. In the simplest case we are
interested in simultaneous two-point correlators of veloc-
ity differences of order n D,(r12) = <v{”2> which are
functions of only one argument 7, 5, the distance between
two points. At the next level is the description in terms
of stmultaneous n-point correlators of velocity differences
such as (1)—(3).

These are functions of n arguments. It is known that
consistent analytical theories of turbulence deal with dif-
ferent time objects reflecting the dynamics of the sys-
tem. Therefore the third level of turbulence description
includes n-time, n-point correlators of order n, which are
functions of 2n arguments.

The simplest scaling assumption made on the first level
of turbulence description is that in the inertial interval
D, () is a uniform function of r and consequently

D,(\r) = X" D, (7), (8)

with (,, being static scaling exponents. We will call this
assumption weak or two-point scaling. Different phe-
nomenological models of turbulence predict different be-
havior of the function (,,. In particular, the famous Kol-
mogorov 1941 (KO-41) model [6-8] results in ¢, = n/3,
with the dynamic exponent z = 2/3 describing the scal-
ing of the turnover time 7(r) (or lifetime) of eddies of
scale r as 7(r) o r*. Such a scaling is called global KO-
41 scaling. The 8 model [9] leads to one-ezponent scaling

¢n=n/3+v(n—3) (9)
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with some value of the exponent v. In the multifractal
models [10,11] the static exponents (, are in fact phe-
nomenological parameters. So, the assumption of weak
scaling leaves scaling exponents undefined.

In describing turbulence in terms of simultaneous n-
point correlators of velocity differences one may assume
that these objects are homogeneous functions of degree
z, in the inertial interval of scales, i.e., Fn(Akg)
A~%» Fn (k) with arbitrary values of z,,. We will call this
assumption many-point scaling. Obviously many-point
scaling is a stronger assumption than two-point scaling.
It is important that the derived law of decomposition (7)
provides constraints between scaling exponents (,:

Cn—f—m + <2 = Cn+1 + Cm—f—l . (10)

Together with the well known constraint (3 = 1 [6], this
yields the relation of the 8 model (9). Thus, many-point
scaling implies one-exponent scaling (9).

In [5] we discussed many-time, many-point scaling,
which is the assumption that different-time two-point,
three-point, etc. objects of the theory of turbulence are
homogeneous functions in the inertial interval and may
be characterized by some scaling exponents. We showed
that this strongest scaling is consistent with the exact
relation deduced if scaling exponents are related accord-
ing to the KO-41 model with (,, = n/3. So, many-time,
many-point scaling gives birth to global KO-41 scaling.

Apart from many-time, many-point scaling leading to
global scaling, one may expect solutions of greater com-
plexity consistent with the multifractal models of tur-
bulence [10,11]. We cannot reject this possibility, but
postpone the question of the relation between multifrac-
tal models of turbulence and the Navier—Stokes equations
to the future.

III. PROOF OF ASYMPTOTIC RELATIONS

As usual [6] in the inertial interval of scales we shall
start with the Euler equation in an unbounded region:

ov

ot
Here v(t,r) is the velocity field of an incompressible fluid,
P is the pressure, and we have set the density p = 1. In
order to eliminate the sweeping from the theory let us use
the quasi-Lagrangian (QL) velocity u(ro|t,r) (see [2,3])

v(t,r) = u<r0|t,r —/ u(ro|7, l'())dT) . (12)

Here the function u has an additional argument, the co-
ordinate of the marked reference point ro. Substituting
(12) in (11) one obtains the equation of motion for the
QL velocity. In the k representation it takes the form

+(v:-V)v+VP=0, V.v=0. (11)

iOua(rolt, k) /Ot

= %(%)_G/dsqdapVam(k; q,p)
Xug(rolt, —q)uy(rolt, —P) - (13)

The expression for the dynamic vertex V is given for ex-
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ample in [5]. We do not need it here. The only property
of Vop+(k; q, p) which is now important is its locality in
k space: in asymptotic regimes where one of the wave
vectors (k, ¢ or p) is much smaller than the other two,
the vertex V tends to zero as the smallest wave vector.
Note that the initial Eulerian vertex is proportional to
k and does not tend to zero if q and p go to zero. The
main technical difference between the quasi-Lagrangian
and the conventional (in terms of Eulerian velocity) de-
scription of turbulence is that the wave vector k is no
longer preserved in the dynamic vertex V since it is not
proportional to §(k+q+ p). This is a consequence of the
spatial inhomogeneity of the theory due to the choice of a
definite reference point rq in the definition of the QL ve-
locity (12). We will use Eq. (13) in Wyld’s perturbation
approach [2,3].

Natural objects of Wyld’s diagrammatic expansion are
the bare vertex V,g, and dressed propagators which
are the Green’s function C:'a,g and the double correla-
tor Fzyaﬁ. The former is defined as the susceptibility of
the average QL velocity field u, to a force ¢g which is
added to the right-hand side of the equation of motion
(13). In the QL approach propagators depend on rg, w, k,
and k; and are not proportional to §(k — k;). Neverthe-
less, QL propagators become diagonal in k by integration
w1th respect to w because this results in simultaneous
QL propagators Gag (k) and Fag (k) coinciding with the
Eulerian ones G,5(k) and Fog(k) [2,3]

[ Fras (i ks, )i (2m)° = Froa()é(k —ka) . (14)

We consider first the diagrammatic expansion for the
triple correlator F3 gy of QL velocity. Figure 2(b) shows
dashed lines trisecting diagrams by cutting through wavy
lines which represent double correlators F, ,3. Each %
plane contains one entrance into the diagram. While
diagrams for mass operators have vertices V as en-
trances, diagrams for F3 have three external legs which
are propagators (Green’s function or double correlator).
Sometimes it is useful to show external legs explicitly
as is done with one leg (having arguments k,w) in
Fig. 2(c). In this figure we introduce the intermedi-
ate objects A and B which have one (k,w) entrance
of the first type (vertex) and two other entrances of
the second type (legs—propagators). In such a manner
one can split the analytical expression for F3 into two
parts that are proportional, respectively, to Fy % A and
to G x B. Here the * operator designates summation
over vector indices and k integration: Cog(k,k’,w) =
Ax B = [Aa(k k' w)B,s(k" k,w)dk"”. An im-
portant point is that in the kmit k < k; =~ ky
the main contribution to Fs is given by the ﬁ’z * A
term. Indeed one can easily estimate the ratio A/B as

G(k,, 1,wl)/Fz(kl, 1,wl)—see Fig. 2(b). Taking into
account that Fp(kq,k},w;)/G(ky,K,,w) is close to the
simultaneous double correlator Fy(k;) at k; ~ k!, one
has the following estimate for a ratio:

é*é ~ lez(kl)
Fyx A~ kF(k)
In the inertial interval Fy(k) o< k™Y (y is the static

Ky =

(15)



RAPID COMMUNICATIONS

R672

exponent, y = 11/3 for KO-41 model) and K; =~
(k/k1)®¥~1) < 1. Clearly, the above considerations (clas-
sification of diagrams with respect to the type of one of
the legs), show that the estimate (15) is valid for cor-
relators of any order n > 3. That is why in the limit
k =k < kj, 3 =2,...,N, the main contribution to
N-order correlators comes from the F' * A term:

FN;an,.‘.(K'a w1 ko, wai ka,ws, .. )

:/FZ;aa’(Kvnlawl)
XAN;Q’,B'\/,.‘.(K',,QJI;k23w2;k37w3a .. )dﬂ//(zﬂ)s .
(16)
J

Fniap,. u(K ke ..., kn)o(k+ ko + -

+ kn)= Friaal (K)ANaipy,... (K Kas -
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In order to obtain simultaneous IN-order correlators of
Eulerian velocities Fi;og-,...(K,k2,ks,...) one must in-
tegrate (16) with respect to all frequencies wy, wa, w3, ...
[2]. The main contribution to [ dw; comes from the re-
gion w; ~ k* K w; ~ k¥ because of k < k;. Here z, the
dynamic exponent, equals 2/3 for the Kolmogorov model.
It is important that the function A depend only weakly
on w;. The diagrams for A do not contain any propa-
gators depending explicitly on w; alone. The w; depen-
dence of A arises only via arguments like (wy +w; + - --).
Therefore A/dw; ~ A/w; and one may neglect the w;
dependence of A. This enables us to perform the w; in-
tegration with the help of (14). Thus one has

kN) s ANjary,... (K, K2, .. k)
de du)g

= /AN;a’B'y,‘..(K',O;kZaw%k3a"-’37'--)__"' . (17)

Taking into account that function A contains the dynami-
cal QL vertex V(k, k', k") ox k we come to the conclusion
that for small  this correlator is proportional to KF3(k).

The above result may be extended to the case in which
not only one argument of Fiy « but several of these are
smaller than others: ki,Ka,...,k¢ <€ ket1,...,kn (be-
cause of conservation of momentum £ < N — 2). Clearly
in this case the main contribution to the N-order correla-
tor derives from diagrams in which the external legs with
small wave vectors & ; are double correlators only and are
not Green’s functions. Each of these legs gives a factor
k;F3(k;) in the £ dependence of Fy. As a consequence
one obtains the asymptotic relation (4).

Next we will prove Eq. (5). To this end let us use
the classification of diagrams for the N-order correlator
shown in Fig. 2. Consider the contribution of the first
QL diagram with one Fi(k,k’,w') in the principal in-
tersection [2,3]. In order to compute the simultaneous
correlator of the Eulerian velocity one may integrate the
corresponding QL correlator with respect to all frequen-
cies. In the limit (6) it is possible to neglect the w de-
pendence of both (“left” and “right”) functions A. The
reason for this has been already discussed. Performing
the o' integration with the help of (14) one obtains a
relation similar to (17)

kn, e ,kN)(S(kl “+ .- kN)
E) kna _n)
X F246(K) A14m;681,82,.8m (K Kng1, - - -

FN;‘xly---vanaﬁl,“'vBm (klv ko,...,

= An+1;a1,a2,...,an,'y(k17 k2, oo

) kN) .
(18)

(2m)3 (2m)°

[
Here the functions A are given by (17). It is clear that
(5) follows from (17) as well as the relation A o .

Now we will prove relation (7). For isotropic turbu-
lence Fp,0 (k) = P&LB (k)F2(k), P&Lﬁ (k) = 8ap — kaks/k?
= Pg, (k)Pj‘B(k). Clearly F3,4 3 satisfies the relation

F2;a,ﬂ(k) = FZ;aw(k)FZ;%B(k)/FZ (k) ) (19)

which is inserted into (18). Equation (17) shows that
Ani1F2 and FyAq4, in (18) are F,; and Fi4,, corre-
spondingly. In such a manner Egs. (17)—(19) yield (7).
Note that contributions to Fy given by the next dia-
grams in Fig. 3 (with two or more lines of double cor-
relators in the principal intersection) do not contain the
factor K?Fy (k). Therefore such contributions are smaller
than the value of the first diagram (with one double cor-

relator in the principal intersection) by a factor Ky ~
k2Fy(k)/k?Fy (k). For KO-41 spectra Ky ~ (x/k)%/3.
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